Publications

Stochastic Memristive Devices for Computing and Neuromorphic Applications “, Siddharth Gaba, Patrick Sheridan, Jiantao Zhou, Shinhyun Choi and Wei Lu, Nanoscale, 2013.

 

Memristors: Going Active“, Wei Lu, Nature materials, 2012, 12(2): 93-94.

 

Oxide Heterostructure Resistive Memory“, Yuchao Yang, ShinHyun Choi, and Wei Lu, Nano Lett., May, 2013.

 

Complementary resistive switching in tantalum oxide-based resistive memory devices“, Yuchao Yang, Patrick Sheridan, and Wei Lu, Appl. Phys. Lett. 100, 203112 (2012).

 

Observation of conducting filament growth in nanoscale resistive memories“, Yuchao Yang, Peng Gao, Siddharth Gaba, Ting Chang, Xiaoqing Pan, and Wei Lu  Nature Communications, 3, 732 (2012).

 

Electrochemical metallization cells—blending nanoionics into nanoelectronics?” Wei Lu, Doo Seok Jeong, Michael Kozicki, and Rainer Waser, MRS Bulletin, 37, 124-130 (2012).

 

A Functional Hybrid Memristor Crossbar-Array/CMOS System for Data Storage and Neuromorphic Applications”, K.-H. Kim, S. Gaba, D. Wheeler, J. M. Cruz-Albrecht, T. Hussain, N. Srinivasa, and W. Lu, Nano Lett., 12, 389–395 (2012).

 

Andreev tunneling enhanced by Coulomb oscillations in superconductor-semiconductor hybrid Ge/Si nanowire devices”, Xiao-Jie Hao, Hai-Ou Li, Tao Tu, Cheng Zhou, Gang Cao, Guang-Can Guo, Guo-Ping Guo, Wayne Y. Fung, Zhongqing Ji, and Wei Lu, Phys. Rev. B 84, 195448 (2011)

 

ITO nanowires and nanoparticles for transparent films”, Eric N. Dattoli and Wei Lu, MRS Bulletin, 36, 782-788 (2011).

 

“Short-Term Memory to Long-Term Memory Transition in a Nanoscale Memristor”, Ting Chang, Sung-Hyun Jo, and Wei Lu, ACS Nano, 9, 7669–7676 (2011).

 

Esaki tunnel diodes based on vertical Si-Ge nanowire heterojunctions”, Wayne Y. Fung, Lin Chen, and Wei Lu, Appl. Phys. Lett. 99, 092108 (2011).

 

Synaptic Behaviors and Modeling of a Metal Oxide Memristive Device”, T. Chang, S. H. Jo, K.-H. Kim, P. Sheridan, S. Gaba, and W. Lu, Appl. Phys. A. 102, 851-855 (2011). (Note: in the SPICE code “l” may be indistinguishable with “1”. This is the new code with “l” replaced by “w” to avoid confusion.)

 

Organic Vapor Discrimination with Chemiresistor Arrays of Temperature Modulated Tin-Oxide Nanowires and Thiolate-Monolayer-Protected Gold Nanoparticles”, K. Scholten, F. I. Bohrer, E. Dattoli, W. Lu, and E. T. Zellers, Nanotechnology, 22, 125501 (2011).

 

Growth and Electrical Properties of Al-Catalyzed Si Nanowires”, S.-Y. Choi, W. Y. Fung, and W. Lu, Appl. Phys. Lett. 98, 033108 (2011).

 

Controlled 3D Buckling of Silicon Nanowires for Stretchable Electronics”, F. Xu, W. Lu, and Y. Zhu, ACS Nano, 5 (1), pp 672–678 (2011).

 

Strong and Tunable Spin-Orbit Coupling of One-Dimensional Holes in Ge/Si Core/Shell Nanowires” X.-J. Hao, T. Tu, G. Cao, C. Zhou, H.-O. Li, G.-C. Guo, W. Y. Fung, Z. Ji, G.-P. Guo, and W. Lu, Nano Lett. 10, 2956–2960 (2010).

 

Nanoscale Memristor Device as Synapse in Neuromorphic Systems”, Sung Hyun Jo, Ting Chang, Idongesit Ebong, Bhavi Bhavitavya, Pinaki Mazumder and Wei Lu, Nano Lett., 10, 1297-1301 (2010). Featured in Nature, EE Times, New Scientist, PhysicsOrg, Chemistry World and other news outlets.

 

Resistance Switching in Polycrystalline BiFeO thin Films”, K Yin, M Li, Y Liu, C He, F Zhuge, B Chen, W Lu, X Pan, RW Li, Appl. Phys. Lett. 97, 042101 (2010).

 

Nanoscale Resistive Memory with Intrinsic Diode Characteristics and Long Endurance”, K.-H. Kim, S. H. Jo, S. Gaba and W. Lu, Appl. Phys. Lett. 96, 053106 (2010).

 

Mechanical Properties of Vapor-Liquid-Solid Synthesized Silicon Nanowires”, Y. Zhu, F. Xu, Q. Qin, W. Y. Fung, and W. Lu, Nano Lett. 9, 3934-3939 (2009).

 

Radio Frequency Nanowire Resonators and in-situ Frequency Tuning”, W. Y. Fung, E. N. Dattoli and W. Lu, Appl. Phys. Lett. 94, 203104 (2009).

 

Radio Frequency Operation of Transparent Nanowire Thin-Film Transistors”, E. N. Dattoli, K.-H. Kim, W. Y. Fung, S.-Y. Choi and W. Lu, IEEE Elec. Dev. Lett. 30, 730-732 (2009).

 

High-Density Crossbar Arrays Based on a Si Memristive System”, S. H. Jo, K.-H. Kim and W. Lu, Nano Lett. 9, 870-874 (2009). Highlighted in Nature Materials.

 

Programmable Resistance Switching in Nanoscale Two-Terminal Devices”, S. H. Jo, K.-H. Kim and W. Lu, Nano Lett. 9, 496-500 (2009).

 

Nanowire Transistor Performance Limits and Applications”, (invited review article) W. Lu, P. Xie and C. M. Lieber, IEEE Trans. Elec. Dev., 55 (11), 2859-2876 (2008).

 

Semiconductor Nanowire Devices” (invited review article) O. Haydena, R. Agarwal and W. Lu, Nano Today, 3 (5-6) 12-22 (2008).

 

Doping Dependent Electrical Characteristics of SnO2 Nanowires”, Q. Wan, E. N. Dattoli and W. Lu, Small, 4 (4), 451-454 (2008).

 

Branched SnO2 Nanowires on Metallic Nanowire Backbones with Sub-ppm Sensitivity to Ethanol”, Q. Wan,  J. Huang, Z. Xie, T. Wang, E. N. Dattoli, and W. Lu, App. Phys. Lett. 92, 102101-3 (2008) (Cover article).

 

CMOS Compatible Nanoscale Nonvolatile Resistance Switching Memory”, S. Jo, and W. Lu, Nano Lett. 8, 392-397 (2008).

 

Si/a-Si Core/Shell Nanowires as Nonvolatile Crossbar Switches”, Y. Dong, G. Yu, M. McAlpine, W. Lu, C. M. Lieber, Nano Lett. 8, 386-391 (2008).

 

Nanoelectronics from the Bottom-Up”, W. Lu, and C. M. Lieber, Nature Mater., 6, 841-850 (2007).

 

Nanostructured Thin Films Made by Dewetting Method of Layer-By-Layer Assembly”, B. S. Shim, P. Podsiadlo, D. G. Lilly, A. Agarwal, J. Lee, Z. Tang, S. Ho, P. Ingle, D. Paterson, W. Lu, and N. A. Kotov, Nano Lett., 7, 3266-3273 (2007).

 

Fully Transparent Thin-Film Transistor Devices Based on SnO2 Nanowires”, E. N. Dattoli, Q. Wan, W. Guo, Y. Chen, X. Pan, and W. Lu, Nano Lett., 7, 2463-2469 (2007). Highlighted in MRS Bulletin.

 

Transparent metallic Sb-doped SnO2 nanowires”, E. N. Dattoli, Q. Wan, and W. Lu, Appl. Phys. Lett., 90, 222107 (2007). Featured in Nanotechweb.org and Virtual Journal of Nanoscale Science and Technology.

 

High-Performance Transparent Conducting Oxide Nanowires”, Q. Wan, E. N. Dattoli, W. Y. Fung, W. Guo, Y. Chen, X. Pan, and W. Lu, Nano Lett., 6, 2909-2915 (2006).

 

Semiconductor Nanowires” (invited review article), W. Lu and C. M. Lieber, J. Phys. D.: Appl. Phys. 39 R387-R406 (2006).

 

Ge/Si nanowire heterostructures as high-performance field-effect transistors”, J. Xiang*, W. Lu*, Y. Hu, Y. Wu, H. Yan, and C. M. Lieber, Nature. 441, 489-493 (2006). (*contributed equally)

 

One-dimensional hole gas in germanium/silicon nanowire heterostructures”, W. Lu, J. Xiang, B. P. Timko and C. M. Lieber, Proc. Natl. Acad. Sci. USA, 102, 10046-10051 (2005).

 

Coherent single charge transport in molecular-scale silicon nanowires”, Z. Zhong, Y. Fang, W. Lu and C. M. Lieber, Nano Lett. 5, 1143-1146 (2005).

 

Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures”, Y. Wu, J. Xiang, C. Yang, W. Lu and C. M. Lieber, Nature. 430, 61-65 (2004).

 

Synthesis and fabrication of high-performance n-type silicon nanowire transistors”, G. Zheng, W. Lu, S. Jin and C. M. Lieber, Adv. Mater. 16, 1890-1893 (2004).

 

Real-time detection of electron tunneling in a quantum dot”, W. Lu, Z. Ji, L. Pfeiffer, K. W. West and A. J. Rimberg, Nature. 423, 422-425 (2003).

 

Superconducting single-electron transistor coupled to a locally tunable electromagnetic environment”, W. Lu , K. D. Maranowski and A. J. Rimberg, Appl. Phys. Lett. 81, 4976-4978 (2002).

 

Charge transport processes in a superconducting single-electron transistor coupled to a microstrip transmission line”, W. Lu, K. D. Maranowski and A. J. Rimberg, Phys. Rev. B. 65, 060501(R) (2002).

 

Single-electron transistor strongly coupled to an electrostatically defined quantum dot”, W. Lu, A. J. Rimberg, K. D. Maranowski and A. C. Gossard, Appl. Phys. Lett. 77, 2746-2478 (2000).

 

Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates”, J. Liu, M. J. Casavant, M. Cox, D. A. Walters, P. Boul, W. Lu, A. J. Rimberg, K. A. Smith, D. T. Colbert and R. E. Smalley, Chem. Phys. Lett. 303, 125-129 (1999).

Comments are closed.